This function converts flows of the "Gasoline type jet fuel" product into flows of "Motor gasoline excl. biofuels". The function then gathers those flows into a single new flow. Basically, it aggregates those two products and keeps the "Motor gasoline excl. biofuels" product name.

convert_fuel_gasoline_into_motor_gasoline(
  .tidy_iea_df,
  product = IEATools::iea_cols$product,
  flow = IEATools::iea_cols$flow,
  e_dot = IEATools::iea_cols$e_dot
)

Arguments

.tidy_iea_df

The .tidy_iea_df for which jet fuel type gasoline needs to be converted into motor gasoline.

product, e_dot, flow

See IEATools::iea_cols.

Value

A .tidy_iea_df for which jet fuel type gasoline is converted into motor gasoline.

Examples

# Here we add a flow of "Gasoline type jet fuel":
tidy_AB_data %>%
tibble::add_row(
 Country = "A",
 Method = "PCM",
 Energy.type = "E",
 Last.stage = "Final",
 Year = 2018,
 Product = "Gasoline type jet fuel",
 Ledger.side = "Consumption",
 Flow.aggregation.point = "Industry",
 Flow = "Iron and steel",
 Unit = "ktoe",
 E.dot = 20
) %>%
 dplyr::filter(Country == "A" & stringr::str_detect(Product, "(G|g)asoline")) %>%
 print()
#> # A tibble: 10 × 11
#>    Country Method Energy.type Last.stage  Year Ledger.side
#>    <chr>   <chr>  <chr>       <chr>      <dbl> <chr>      
#>  1 A       PCM    E           Final       2018 Consumption
#>  2 A       PCM    E           Final       2018 Consumption
#>  3 A       PCM    E           Final       2018 Consumption
#>  4 A       PCM    E           Final       2018 Supply     
#>  5 A       PCM    E           Final       2018 Supply     
#>  6 A       PCM    E           Final       2018 Supply     
#>  7 A       PCM    E           Final       2018 Supply     
#>  8 A       PCM    E           Final       2018 Supply     
#>  9 A       PCM    E           Final       2018 Supply     
#> 10 A       PCM    E           Final       2018 Consumption
#> # ℹ 5 more variables: Flow.aggregation.point <chr>, Flow <chr>, Product <chr>,
#> #   Unit <chr>, E.dot <dbl>
# Then we gather both flows:
tidy_AB_data %>%
tibble::add_row(
 Country = "A",
 Method = "PCM",
 Energy.type = "E",
 Last.stage = "Final",
 Year = 2018,
 Product = "Gasoline type jet fuel",
 Ledger.side = "Consumption",
 Flow.aggregation.point = "Industry",
 Flow = "Iron and steel",
 Unit = "ktoe",
 E.dot = 20
) %>%
 dplyr::filter(Country == "A" & stringr::str_detect(Product, "(G|g)asoline")) %>%
 convert_fuel_gasoline_into_motor_gasoline() %>%
 print()
#> # A tibble: 9 × 11
#> # Groups:   Country, Method, Energy.type, Last.stage, Year, Ledger.side,
#> #   Flow.aggregation.point, Flow, Product [9]
#>   Country Method Energy.type Last.stage  Year Ledger.side Flow.aggregation.point
#>   <chr>   <chr>  <chr>       <chr>      <dbl> <chr>       <chr>                 
#> 1 A       PCM    E           Final       2018 Consumption Industry              
#> 2 A       PCM    E           Final       2018 Consumption Other                 
#> 3 A       PCM    E           Final       2018 Consumption Transport             
#> 4 A       PCM    E           Final       2018 Supply      Energy industry own u…
#> 5 A       PCM    E           Final       2018 Supply      Energy industry own u…
#> 6 A       PCM    E           Final       2018 Supply      Energy industry own u…
#> 7 A       PCM    E           Final       2018 Supply      Energy industry own u…
#> 8 A       PCM    E           Final       2018 Supply      Transformation proces…
#> 9 A       PCM    E           Final       2018 Supply      Transformation proces…
#> # ℹ 4 more variables: Flow <chr>, Product <chr>, Unit <chr>, E.dot <dbl>